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Abstract

The physical interpretation of deformations is performed to give information on the
state of internal stresses in a deformable body and on the load-deformation relationship.
The latter may be obtained using either a statistical method which analysis correlation
between observed deformations and observed loads or a deterministic method which
utilizes information on the loads, properties of the materials, and physical laws goverming
the stress-strain relationship. Both methods lead to development of prediction models of
deformations. The deterministic analysis must utilize numerical methods because direct
solutions may be difficult or impossible to obtain. Among the numerical methods, the
finite element analysis has become the most powerful. It requires sophisticated computer
programs and extensive expertise in their application. The best results of the physical
interpretation are obtained by combining the deterministic and statistical methods of the
analysis in which the deterministic modet is "calibrated" through a comparison with the
statistical {empirical) model and with the actually observed deformations.

* Visiting Professor from Wuhan Technical University of Surveying and Mapping, P.R.
of China (Honorary Research Associate at UNB).



1. Introduction

As already discussed in the preceding presentation on the geometrical analysis, a
deformation survey is to serve one, or both, of two main purposes:

(1) to give information on the geometrical status of a deformable body, the change in its
position, shape, and dimensions;

(2) to give information on the physical status of a deformable body, the state of intemal
stresses, and the load-deformation relationship.

In the first case, information on the acting forces and stresses and on the mechanical
properties of the body are of no interest to the interpreter or are unavailable. The process
of transforming the deformation measurements into the geometrical status has already been
discussed in the previous section as the geometrical analysis. From the outcome of the
geometrical analysis, one may make a qualitative interpretation of the causes of the
deformation.

In the second case, the process of deriving information on the load-deformation
relation is called physical interpretation. Somewhat schematically, one can perform such
interpretation by using either of the two methods:

(1) A statistical method (regression analysis) which analyses the correlations between
observed deformations (e.g., displacements) and observed loads (external and
internal causes producing the deformation). These correlations can be obtained by
performing statistical analyses on the past data. Therefore, this method is of an a
posteriort nature,

(2) A deterministic method which utilizes information on the loads, properties of the
materials, geometry of the body, and physical laws governing the stress-strain
relationship. In contrast to the previous method, this one is of an a priori nature.
The distinction between the two methods should not be taken as absolutely clear cut.

In fact, each method includes a statistical and a deterministic part. The possible forms of
the model sought under (1), relating the causative quantities to the response effects, are
obtained by qualitative knowledge about the expected behaviour of the body. The model
determined by the deterministic method may be further enhanced through the statistical
method, for instance, calibration of the physical parameters of the material from the
measured deformation quantities.

The deterministic method provides the expected deformation from the measured
causative quantities. If the difference between the expected deformation and the measured
one is small, compared with the various errors and uncertainties which characterize the
process, then the body behaves as expected and the deterministic model is justified.
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Otherwise, a search for the reasons for the large discrepancies should be undertaken, and
the model should be improved by combining, for instance, the deterministic and statistical
models.

The statistical method establishes an empirical predicion model. Using this model,
the forecasted deformation can be obtained from the measured causative quantities. A
good agreement between the forecasts and the measurements then tells us that the
deformable body behaves as in the past. Otherwise, as in the previous case, reasons
should be found and the model should be refined.

The flowchart in Figure 1 summarizes the interpretation methods and their
interactions.

2. Interpretation by Statistical Method

Interpretation by statistical method always requires a suitable amount of
observations, both of causative quantities and of response effects. Let d be the vector of
response effects. Then a functional relation between the "causes” and the "responses” can
be established in the form:

d=Bc+v, (1)
where d may be directly observed or the outcome of the geometrical analysis; v is the
vector of errors. In the contrast to geometrical analysis, the elements of the matrix B are
functions of the causative quantitics.

Different causative quantities may produce the deformations in different ways.
Some effects can be approximated by polynomial functions, but others may be more
adequately expressed as trigonometric functions, and so forth. All that is embedded in the
matrix B. The vector ¢ in eqn. (1), representing the magnitude of the effects, is to be
estimated.

Let us take as an example modzliling of the response of a power dam to the causative
effects as a function to time t. The horizontal displacement di(t) of a point i can be
modelled as:

di(0) = F; () + Li(t) + G;(t) + v(v) , (2)
where F(t) is the hydrostatic pressure component, L;(t) is the thermal component, G,(t) is
the irreversible component due to the non-elastic behaviour of the dam, and v(t) is the error
component. The hydrostatic pressure component is a function of the water elevation h(t} in
the reservoir:

Fi(t) = a;, + a;h(t) + aph?(t) + ... + &, h™(t) . 3
The thermal component can be modelled in two ways. [f some key temperatures T (1),



(i=1,...,k) in the dam are measured, then
Li(t) = ¢, T{(8) + e T5(0) + ... + €5 T (1) . 4
If no temperature measurements are available, then
Li(t) = f;; sinwt + ¢;; coswt + fi, sin2ct + Cip COS20t + ...
+ fip SINpOX + ¢, cospat . (5)
where ® = 2m/1; T= 1 year. The irreversible component originates from non-elastic
phenomena, like creep of the dam, and is usually approximated by exponential functions:

{
G- Tgekty . (6)
: .

{n the above expressions, all the coefficients form the vector ¢ in eqn. (1). The matrix B is
established from the base functions in eqns. (3) and (4) or (5) and {6).

Applying the least-squares criterion, the vector ¢ and its variance-covariance matrix
are estimated from

¢=®BTP,By! BTP,d, : (7
and

Zo= 0BT Py BT, ®
where P is the weight matrix of d and 6,2 is the a priori variance factor. The a posteriori
variance factor

Gy2 = ((d- B Py(d - BE) /(D) ©)
with df being the degrees of freedom, serves as an indicator of the appropriateness of the
deformation response model Be. If the inequality,

3,%6,2 < F(o; df, =), (10)
is satisfied, then one may accept that the deformation is satisfactorily explained by the
model. If some of the estimated coefficients become statistically insignificant, then they
should be excluded from the model and the model must be modified. The detailed
discussion on the statistical tests can be found in Chen [1983], and it has been summarized
in the section on geometrical analysis.

Similar to the procedures and methods in geometrical analysis, those in statistical
testing are applicable to the statistical method of the physical interpretation. The same three
basic steps are usually followed, that is, preliminary identification of the response model,
estimation of unknown coefficients, and diagnostic checking of the model.

The statistical method of the physical interpretation possesses some undeniable
mers:

(1} knowledge of the mechanical properties of a deformable body is not required;



(2) good results from the point of view of prediction are usually obtained.

But it also contains some undesirabie features: .

(1) acomparatively large amount of data on both causative and response quantities is
needed in order to obtain a reliable model;

(2) the information (prediction) cannot be generalized to other deformable bodies
because the body in this case is acting only as a "black box."

Example: The displacements of a point on an arch-gravity concrete dam was
measured weakly and plotted in Figure 2(b). At the same time, the water elevation in the
reservolr was recorded, as shown in Figure 2(a). No temperature measurements were
avatlable, Using models (3) and (5), the following statistical model of the deformation
(displacement in millimetres) has been obtained:

d(t) = L{t) + F(t)
where

L(1) = -6.287 sin{wt) - 8.4709 cos(wt) + 1.1018 sin(2wt) - 0.0042 cos(2mt)
and

F(t) = 30.2524 - 16.3029 x(t) + 24.7444 x3(t) - 35.132 x3(1),
with

x(t) = [h(t) - 462.4]/44.6 .

Figure 2(c) shows the differences between the measured and modelled (predicted)
displacements. The differences do not indicate any time dcpcndenc& and, therefore, the
irreversible component (6) has not been included in the model.

3. Interpretation by Deterministic Method

Any real material deforms if an external force ts applied to it. The external forces
may be of two kinds: surface forces, i.e., forces distributed over the surface of the body,
such as the pressure of one body on another; and body forces, which are distributed over
the volume of the body, such as gravitational forces, thermal stress or, in the case of a
body in motion, inertial forces. Under the action of external forces, a state of stress exists
in a body,

As discussed in Chrzanowski and Chen [1986], the deformation of a body is fully
described 1f six components of the strain tensor are known at every point. The six
components consist of three components of normal strain, g,, Eys and €,, which describe
change in the dimensions at the point (x, v, z} along the x, y, and z axes of the coordinate
system, and three components of the shearing strain €, ., ,,, and &, which describe

change 1n the shape of the element (angular changes) in the corresponding planes of the



b) Superposition of measured (----- J and statistically
modelled (————) displacements {(mm)

¢) discrepancies between obsrved and modelled displacements
in mm.

FIG.2. Comparison between measured and predicted displacements
of a point on a dam structure (after ENEL,13880)



coordinate system.

Similarly, the state of stress at any point of the medium is completely characterized
by the specification of six components of stress tensor: three components of normal stress,
xy» Oxzs and Oyze
The relation between the strain tensor and stress tensor is governed by the

C,, Oy, and o,; and three components of shearing stress, &

gencralized Hooke's law. For a homogeneous isotropic medium, the generalized Hooke's
law can be written as:

[o, 1 [1v v v O 0 o 1Te |1
| oy | lv 1-v v O 0 0 e |
lo, | (v v lv 0 0 o fle |
| o,y | =E(i+0)1-20) [0 0 0 (@202 0 0 |le, I amn
l o, | lo 0o 0 o a2 o |leg, |
Lo, J Lo o o0 o 0 2vw2 ] le, |
or, more compactly, as
c=Dg, (119

where E is Young's modulus, v is Poisson's ration, and D is the constitutive matrix of the
material.

In order to determine the relation between external forces, state of stress, and
displacements, the solution must satisfy the three basic. conditions [Timoshenko and
Goodier, 1970]:
(1)  the equilibrium of forces (external and internal),
(2)  the compatibility of displacements, and
(3)  the law of material behaviour (the stress-strain relation eqn. (11)).
The compatibility condition requires that the deformed structure fits together, i.e., that
deformations of its elements are compatible and no discontinuities are created in the
process of the deformation. The equilibrium conditions have the form [Sokolnikoff,
1956]:

f=BT7. ¢, (12)

where f1 = (f,, f,, £.) is body force and matrix B is a differential operator:
Xty tz P

[dmx 0 0 3Ry 0 ez
BT=| 0 o0y 0 om@x o9z 0 | (13)
Lo 0 o 0 3Ry odxl



Considering the strain-displacement relation

£=Bd , (14)
where d = (u, v, w)1 is the displacement and combining eqns. (11°), (12), and (14), one
obtains the differential equations for displacements:

f=BTDBd . (15)

In principle, when the boundary conditions, either in the form of displacements or in
the form of the acting forces, are given and the body forces are prescribed, the differential
eqns. {15) are completely solved. However, direct solutions may be difficult, and
‘numerical methods have to be used where the finite element method provides a powerful
tool. The finite element technique gives an exact solution to a problem which approximates
the differential egns. (15).

The basic concept of the finite element method is that the continuum of the
deformable body is replaced by an assemblage of individual small elements of finite
dimensions which are connected together only at the nodal points of the elements. The
clements may be of any shape but usually triangular or rectangular elements are chosen for
two-dimensional analysis and rectangular or trapezoidal "bricks" are used in the
three-dimensional solutions. Figure 3 gives as an example a three-dimensional finite
element mesh of a dam and its foundation used for computation of displacements of points
on the dam {ENEL, 1980). Figure 4 is a two-dimensional mesh for predicting ground
movements due to mining activities [Chrzanowski and Szostak-Chrzanowski, 1985]. For
each element, one can establish the relationship between the nodal forces and
displacements. For example, in the two-dimensional analysis with triangular elements, the
displacement at point (x, y) can be modeiled as

U =) + 29X + a3y '

V=34t agX + gy, (16)
where u, v are the components of displacement in x and y directions, respectively.

Since both components are linear in x and y, the displacement continuity between the
adjoining elements for any nodal displacement is ensured. Thus the finite element model
of a defonmable body involves a piecewise polynomial interpolation of displacement field.
The nodal displacements define several displacement fields that are laid side by side. Let
d, be a vector of displacements for the three nodal points, i.c., deT = (Uy, Vq, Uy, Vo, U,
v4) and al = {ay, ..., ag). Then, for an element, the expression (16) can be written as

d,=M,a, (17
with M, being a 6 by 6 matrix, easily obtained from eqn. (16). Applying the relation (14),
we obtain the strain vector

gl = (€4, £y, Exy) = (45, 25, a3 + ag) ,



F1G.3. Three-dimensional! finite clement mesh of a dam
and its foundation (after ENEL,1980)
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or, in shorthand matrix notation,

g=Na. (18)
Combining eqns. (17) and (18), the strain-displacement relation may be expressed briefly
in the form:

e=NM,ld,=Hd,. (19)
Considering eqn. (11), the internal stresses are related to nodal displacements by
c=DBd,. (20)

Furthermore, the internal stresses are replaced with statistically equivalent nodal forces f,,
resulting in the relationship between the nodal forces and displacements [Rockey et al.,
1975]:

f, U, BTDBdv] - d,

=k, d,, (21
where K, is called the stiffness matrix of the element. Comparing eqn. (21) with eqn.
(15), one can recognize that the key step in the finite element method is the approximation
of the differential operator B by a linear algebraic operator.

Once the stiffness matrices for all elements of the deformable body have been
calculated an overall structural stiffness matrix K is composed by a superposition of the
stiffness matrices for all the elements, and the total equilibrium equation for the whole
body is written:

T-K-d, ' (22)
where T is a vector of applied nodal loads in the whole body, and d is a vector of nodal
displacements. If boundary conditions are known, then forces at any nodal points can be
solved from eqn. (22).

If initial stresses and strains in the material are known and the behaviour of the
material (strain-stress relationship) follows a linear elastic model, then the finite element
analysis may give a good prediction of deformations. It applies, for instance, to most
man-made structures made of steel or concrete in which the properties of the material and
acting forces can be determined with a high accuracy. However, in most geotechnical and
rock mechanics studies the behaviour of materials, such as soil or in-situ rocks, must be
modelled by non-linear elastic or plastic behaviour and then the use of the finite element
analysis, which requires extensive experience, must be treated with extreme caution.
Though some sophisticated computer programs, such as FEMMA (Finite Element Analysis
for Mining Applications) which has recently been developed at UNB (Szostak-
Chrzanowski, unpublished), can handle the non-linear behaviour in ground subsidence

studies {Chrzanowski and Szostak-Chrzanowski, 1986], still more research is needed in
this area.



4. Interpretation by a Combination of the Deterministic and Statistical
Methods

Due to many uncertaintics in the deterministic model of deformations, the
theoretically calculated displacements & (or any other deformation quantities) will generally
depart from the observed values d by A, i.e.,

A=0d-d . (23)
The discrepancies may be due to:

° imperfect knowledge of the material properties, for example, errors in the elasticity

constants;

. aforementioned wrong modelling of the behaviour (elastic instead of plastic or creep
neglected, etc,) of the material;

. errors in the thermal parameters of the material;

. approximation in calculations;

. measuring errors in d;

. measuring errors in loading (causative) effects; and so on.

Investigation of the discrepancies is useful in gaining a better knowledge of the
behaviour of the deformable body. Let ¥4, ¥4, and X5 be their covariance matrices, then

Za=2g+2s - 24
In order to test whether the discrepancies A are of a systematic nature, we have a null
hypothesis H, : A = {) against an alternative hypothesis H, : A # 0. The test statistic is

T=aTZ, 1A (25)
with a critical value: x2(ai; df), where df is the rank of ¥ 4 (degrees of freedom). If T > 2
(e dfy at the (1 - )% level of confidence, then H, is rejected and a further search for an
explanation of the discrepancies is required. At this stage, the deterministic and statistical
methods are combined for the interpretation of the deformation measurements.

Assume that the systematic discrepancies are caused, for example, by the improperly
chosen material parameters. Then, new ("calibrated”) values of the parameters can be
estimated by applying the principle of least squares:

min{(8 - d)T £, 13- d)} . (26)

For example, the temperature induced component of the displacement of a point i on
a concrete dam is proportional to the thermal expansion coefficient «, and the hydrostatic
pressure component 1s inversely proportional to Young's modulus E of concrete.
Therefore, the discrepancy Ay(t) is modelled as

A1) = (/- o) Lyt + ( E/E) Fi(t) - dy(v) 27
with two components f.i(t) and E(t) being calculated from the deterministic model using



the values of o and E. Applying the least-squares principle (26), the "calibrated” values
of E and « are estimated.

This method for calibration of the constants of the material properties, however, may
lead to physically unacceptable values of the calibrated quantities if the discrepancy is of a
different source. In such a case, one has to try another approach to the interpretation by
using the statistical analysis of the discrepancies, as discussed above in section 2, in order
to find the reason and then enhance the deterministic model.

5. Concluding Remarks

Physical interpretation of deformation surveys requires interdisciplinary knowledge.
Surveying engineers have a good knowledge of data acquisition and other specialists, e.g.,
geophysicists and civil engineers, are well acquainted with the behaviour of the deformable
body. Efficient cooperation between them is indispensable in order to successfully
interpret the measured results.

Surveying engineers and scientists have not been very involved in the deformation
interpretation which has usually been done by other specialists. This situation should be
changed. Their involvement would contribute to the interpretation of deformation surveys.
In addition, by participating in the interpretation of deformation surveys, surveyors would
gain a good insight into deformation measurements, which would contribute to the optimal
design of monitoring schemes.
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